История искусства Энергетика Локальные компьютерные сети Начертательная геометрия и инженерная графика Курс физики Задачи примеры решения Математика лекции и примеры решения задач Электротехника расчет цепей Информатика
Геометрический аппарат проецирования

Основные законы начертательной геометрии

Начертательная геометрия и инженерная графика является базой для изучения и усвоения других общеинженерных и специальных дисциплин. Графические методы изображения используют и физики, и математики, а также специалисты общетехнических дисциплин.

Взаимопринадлежность геометрических фигур

Общие понятия взаимопринадлежности

 Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности. В общем случае:

 Точка принадлежит любой поверхности, если она лежит на какой-либо линии этой поверхности.

 Желательно, чтобы эта линия имела простые проекции (в виде прямых линий или окружностей). Отсюда – три практичных определения принадлежности:

  1). Точка принадлежит плоскости, если она лежит на прямой этой плоскости (Рис.28 а).

 2). Точка принадлежит криволинейной поверхности, если она лежит на линии, принадлежащей поверхности при условии, что эта линия имеет простые проекции (Рис.28 б.).

 При отсутствии такой возможности задается или используется готовый каркас поверхности. По нему задаётся любая линия по точкам, по которым она пересекает элементы этого каркаса. Отсюда - третье вынужденное определение принадлежности:

Пример Решить предыдущую задачу способом замены плоскостей проекций.

 3). Точка принадлежит поверхности, если она принадлежит любой линии на каркасе поверхности (рис. 28 в). Курс лекций по цифровой графике

 Три определения принадлежности дают возможность говорить о двух способах решения задач на принадлежность точки к любой поверхности. Это:

 1. Способ образующей с простыми проекциями (определения 1 и 2).

  2. Способ случайной кривой на каркасе поверхности (определения 3).

 Решение задач на принадлежность линии к поверхности сводится к многократному повторению основной задачи – на принадлежность точки к поверхности. Число точек, необходимых для построения линии, определяется тем, какая это линия и на какой поверхности она находится.

Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин. Механизм – совокупность подвижных материальных тел, одно из которых закреплено, а все остальные совершают вполне определенные движения, относительно неподвижного материального тела. Звенья – материальные тела, из которых состоит механизм. Стойка– неподвижное звено. 

  Известно, что для прямой на плоскости требуется две точки или точка и направление. Для кривой же линии на любой поверхности требуется теоретически бесконечное, а практически – разумное число точек.

Ускорение Кориолиса равно удвоенному векторному произведению угловой скорости переносного вращения на относительную скорость точки. появляется вследствие двух причин, не учитываемых переносным и относительным ускорениями. Относительное ускорение учитывает изменения направления относительной в неподвижном пространстве подвижной системы координат переносном движении.

 

Пространственное представление является необходимой компонентой общего образования специалиста. Это достигается решением различных проекционных задач, а также при вычерчивании в различных масштабах предметов, разверток, косых сечений. Инженерная задача, как правило, имеет много решений и способов решения, чтобы выбрать лучшее, отыскать предпочтительный метод решения инженер строит различного рода модели. Затем исследует их, сравнивает и создает оптимальный проект какой-либо системы. Образное и пространственное мышление характеризуется широкими возможностями поиска решений, т. к. опираются на наглядность
Метод концентрических сфер