История искусства Энергетика Локальные компьютерные сети Начертательная геометрия и инженерная графика Курс физики Задачи примеры решения Математика лекции и примеры решения задач Электротехника расчет цепей Информатика
Геометрический аппарат проецирования

Основные законы начертательной геометрии

Одной из главных задач курса ''Инженерной графики" является обучение быстрому и качественному чтению чертежей деталей и сборочных узлов. Графическая работа "Сборочный чертеж" включает в себя несколько этапов:

Параллельность и перпендикулярность геометрических фигур

Параллельность прямых и плоскостей

Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Пример (рис.60). Прямая параллельна плоскости , так как она параллельна прямой , принадлежащей этой плоскости.

Две плоскости параллельны, если две не параллельные прямые одной плоскости параллельны, соответственно, двум прямым другой плоскости.

Пример (Рис.61). Задать плоскость , параллельную плоскости . Определить нормальное напряжение в бетоне и арматуре железобетонной колонны, квадратное поперечное сечение которой показано на рис. 1.4.6, причем h = 30 см, модуль продольной упругости стали , а бетона тяжелого класса В 30 –

Искомую плоскость зададим двумя пересекающимися прямыми, которые параллельны, соответственно, прямым, задающим плоскость  и дополительной прямой “” на этой же плоскости.

Дано:

.

Решение:

1). .

2).

3). .

?: .

 

 

 

 

 

Общие понятия перпендикулярности.

Задачи на перпендикулярность – логически взаимно связаны. От плоского прямого угла до нормали к криволинейной поверхности (Рис.62). Без теоремы о проецировании прямого угла не построить перпендикуляр к плоскости. Тем более – не решить задачу для взаимно перпендикулярных плоскостей и не построить на чертеже нормаль к криволинейной поверхности. Построение точки пересечения прямой и плоскости Прямая линия в пространстве может принадлежать плоскости (этот случай был рассмотрен ранее в пункте 3.4 настоящей главы), а также быть параллельной плоскости или пересекать её. При пересечении прямой линии с плоскостью следует выделить частный случай, когда прямая перпендикулярна плоскости. Первый случай был разобран в пункте 3.4, в котором рассматривалась одна из основных графических операций – построение линий, принадлежащих плоскости.


По теореме о проецировании прямого угла следует, что прямой угол проецируется без искажения, если одна сторона параллельна плоскости проекций, а вторая – не перпендикулярна к ней.

Особого доказательства здесь не потребуется, если теорему о проецировании прямого угла сравнить с известной обратной теоремой о трех перпендикулярах (Рис.63). По этой теореме, если прямая на плоскости перпендикулярна к наклонной прямой, то она перпендикулярна к проекции этой прямой: ,

Введем на рисунке плоскость проекций П1, параллельную П0 и доказательство теоремы о проецировании прямого угла станет очевидным:

,

 

 

 

Задачами дисциплины являются: сформировать у студентов знания об ортогональном (прямоугольном) проецировании на одну, две и три плоскости проекций; овладение навыками и правилами оформления чертежей, установленными государственными стандартами ЕСКД, шрифтами и условными обозначениями, применяемыми при оформлении графических документов; развить все виды мышления, соприкасающиеся с графической деятельностью студентов; обучить самостоятельно пользоваться учебными и справочными материалами; грамотное использование чертежных инструментов, приборов и приспособлений с целью построения и оформления чертежей.
Метод концентрических сфер