Экологические проблемы энергетики

Энергетика
Экологические проблемы производства энергии
Изменение климата и Киотский протокол
Проблема теплового загрязнения
Экологические проблемы тепловой энергетики
Экологические проблемы ядерной энергетики
Альтернативный источник энергии
Возобновляемые источники энергии
Ветроэнергетика
Геотермальная энергетика
Энергия приливов и отливов морей и океанов
Гидроэлектростанции (ГЭС)
Биоэнергия
Ядерная энергетика.
Водородная энергетика
Основные способы получения энергии
Анализ процессов трансформации энергии

ПЕРСПЕКТИВЫ РАЗВИТИЯ АТОМНОЙ ЭНЕРГЕТИКИ В РОССИИ:

Многочисленные прогнозы дальнейшего использования атомной энергии в мире достаточно противоречивы и неоднозначны. В некоторых странах сложилось негативное отношение к АЭС. Большинство прогнозов сходятся на том, что потребности в электрической энергии в мире к середине XXI в. возрастут в 2-3 раза по сравнению с концом XX в., что связано с неизбежным удвоением населения Земли, а также с ростом потребления энергии в развивающихся странах. Поэтому атомная энергетика, удовлетворяющая повышенным требованиям по безопасности и экономике, должна взять на себя определенную часть прироста мировых потребностей в топливе и энергии. Ближайшие перспективы развития атомной энергетики в России определены в «Программе развития атомной энергетики». Важнейшими задачами до 2015 г. являются: наращивание производства электроэнергии на АЭС (для замещения органического топлива с высвобождением ресурсов газа и нефти) благодаря повышению эффективности использования ее существующих мощностей; продление сроков эксплуатации энергоблоков, выработавших установленный ресурс; продление сроков эксплуатации энергоблоков, выработавших установленный ресурс; завершение строительства и ввода в действие новых энергоблоков, имеющих высокую строительную готовность.

Программой предусматривается ввод современных энергоблоков на Ростовской, Калининской и Курской АЭС. Кроме того, планируется обеспечить проектирование, строительство и ввод в эксплуатацию головных энергоблоков АЭС нового поколения повышенной безопасности с ректорами ВВЭР-640 (модификация В-407) и ВВЭР-1000 (модификация В-392) на новых площадках Сосновоборской, Кольской и Нововоронежской АЭС. Намечено сооружение энергоблоков с реакторами БН-800 на площадках Южно-Уральской и Белоярской АЭС. Предстоит довести до практической реализации и продемонстрировать эффективность и высокую безопасность ACT - атомных станций теплоснабжения для обеспечения теплом крупных городов и регионов. Программой предусмотрена также расконсервация и достройка Воронежской ACT с двумя энергоблоками тепловой мощностью по 500 МВт, а также сооружение новой аналогичной двухблочной ACT в г. Томске. В соответствии с этим документом  в России намечено достигнуть следующих показателей (табл. 4)

Важным является проведение намеченных научных исследований и опытно-конструкторских работ (НИОКР) по созданию и внедрению в атомную энергетику XXI в. реакторных установок с естественной безопасностью, в которых исключаются тяжелые аварии с повреждением топлива в активных зонах реакторов. Принцип естественной безопасности атомной энергетики распространяется на весь ядерно-топливный цикл и включает в себя следующие требования: исключение тяжелых аварий с повреждением ядерного топлива, представляющих радиационную опасность для населения; надежное обращение и захоронение радиоактивных отходов; обеспечение режима нераспространения ядерных материалов.

Оценивая перспективы атомной энергетики, необходимо иметь в виду, что к настоящему времени в России сложилась благоприятная ситуация со складскими запасами урана, достаточными для работы атомных электростанций общей электрической мощностью 70-75 ГВт в течение нескольких десятилетий (даже при незамкнутом топливном цикле).

Формирование крупномасштабной атомной энергетики позволит снизить потребление органического топлива (и в первую очередь природного газа), реструктурировать экспортный потенциал России и восполнить его другими энергетическими ресурсами, способствовать решению экологических проблем, связанных с энергетикой, а также решить задачу длительного и надежного энергообеспечения отдаленных и труднодоступных районов страны, использующих жидкие органические виды топлива.

Высокотемпературные газовые реакторы и быстрые газовые реакторы-размножители является следующим поколением перспективных и безопасных ядерных источников как для выработки электрической энергии, так и для получения высокопотенциального технологического тепла.

Наличие в России удаленных и труднодоступных регионов (Крайний Север, Дальний Восток и др.) с низкой плотностью населения предопределяет целесообразность использования для электро- и теплоснабжения автономных ядерных источников небольшой мощности. Программой развития АЭС предусматривается сооружение головных ядерных установок малой мощности, в том числе строительство АТЭЦ в г. Певек (на Чукотке) и в Приморском крае, на базе судовой реакторной установки типа КЛТ-40 тепловой мощностью 70 МВт. В России морская транспортная энергетика получила широкое развитие и хорошо себя зарекомендовала. В XXI в., безусловно, будет продолжаться дальнейшее развитие и совершенствование транспортной (судовой) атомной энергетики - создание плавучих атомных электростанций.

Источники энергии сегодня их значение.

Становление и развитие человеческой цивилизации всегда было связано с развитием и совершенствованием энергетики и зависело от нее. Практически электро теплоэнергетика является системообразующей отраслью любой экономики, а значит и государства. От ее состояния зависят уровень и темпы социально–экономического развития любой страны.
Энергию, которую мы используем сегодня, получают, в основном, из ископаемых видов топлива. Уголь, нефть и природный газ - ископаемые виды топлива, созданные в течение миллионов лет в процессе распада растений и животных. Месторасположение этих ресурсов - недра Земли. Под воздействием высокой температуры и давления, процесс образования ископаемых видов топлива продолжается и сегодня, однако их использование происходит намного быстрее, чем образование.

Сегодня ископаемые виды топлива, такие как каменный уголь, нефть и природный газ составляют 90% общих первичных энергоресурсов. Разведанные запасы традиционных углеводородных ресурсов в России пока позволяют обеспечивать текущие потребности национальной экономики и получать существенные доходы от экспорта энергоносителей. В то же время с каждым годом наблюдается ухудшение горно-геологических условий добычи горючих полезных ископаемых. С начала 90-х годов прошлого века восполнение запасов углеводородных ресурсов отстает от темпов роста их добычи. Например, в 1994-2000 гг. отношение суммарного объема добычи к суммарному приросту запасов составило по нефти - 1,31 и по газу - 2,1.

 Большую роль в общем балансе энергий играет также электроэнергия, получаемая на гидроэлектростанциях, а в последние 50 лет атомная энергетика.
Общее мировое потребление энергии во всех ее формах показаны в таблице 1.

таблица 1.

Мировое энергопотребление в 2000 г.

показатели

Мир, мил т.н.э

США,%

ЕС-15, %

Япония, %

Россия, %

Китай,%

Индия,%

Все виды топлива

9 977,7

23,1

14,9

5,3

6,2

11,4

5,2

Твердое ископаемое топливо

2336,0

23,2

9,4

4,1

4,7

28,1

7,5

Нефть

3482,7

25,6

17,2

7,5

3,7

6,4

3,2

Природный газ

2112,4

26,0

16,3

3,1

15,1

1,3

1,1

Атомное топливо

680,4

30,6

33,8

12,3

5,1

0,6

0,6

ВИЭ

1367,1

8,0

6,7

1,2

1,5

17,1

15,2

Гидро

227,4

9,6

12,8

3,3

6,2

8,4

2,8

Геотермальная

43,5

30,1

7,9

6,6

0,1

0

0

Ветер/солнце

7,2

27,4

37,8

12,6

0

0

1,9

Биомасса

1089,0

6,7

5,2

0,5

0,6

19,7

18,5

ЕС-15: ЕС комиссия, Организация по экономическому сотрудничеству и развитию

 По официальным оценкам мировые объемы энергопотребления будут расти и в будущем, также как и в предыдущие годы. Все это ведет к увеличению количества различных проблем, связанных с энергопоставками и защитой окружающей среды.

Одной из основных причин роста энергопотребления является рост населения. В 2000 году население планеты составляло около 6 млрд. человек. По оценкам экспертов ООН к 2025 году мировое население достигнет почти 8 млрд. человек, однако ближе к 2100 году стабилизируется на уровне 10-12 млрд. человек. Основной прирост населения придется на менее развитые страны.

Согласно официальному прогнозу, подготовленному Международным энергетическим агентством (IEA) "Мировой энергетический обзор - 2004", рост объемов энергопотребления в мире будет наблюдаться в течение ближайших двух десятилетия, и, в первую очередь, за счет увеличения энергопотребления в Азии. Ожидается, что объем мирового энергопотребления в 2020 году составит почти 600 000 ПДж (14 400 млн.. т н.э.).

 Ожидаемый прирост в общем объеме энергопотребления за период с 1995 по 2020 года составит около 230 000 ПДж (5500 млн. т н.э.), что соответствует суммарному мировому энергопотреблению, отмеченному за 1971 год - как раз на кануне энергетического кризиса, разразившегося в 1973 году. Две трети роста энергопотребления придется на развитые промышленные страны, а также на страны с переходной экономикой, большая часть которых сконцентрирована в Азии. В 2002 году энергопотребление в промышленных странах (страны, входящие в Организацию экономического сотрудничества и развития (OECD) + бывшие социалистические страны) превысит общий показатель энергопотребления в развивающихся странах на 12%. Но уже к 2030 году, объем энергопотребления в промышленных странах будет превышать объем энергопотребления в развивающихся странах всего на 2%.

 Согласно Международному энергетическому обзору, подготовленному IEA, потребление нефти превысит 5000 млн. т н.э. в 2020 году, а норма потребления увеличиться практически на 50% по сравнению с 1995 годом. По подсчетам специалистов мировое потребление угля к 2020 году составит 3200 млн. т н.э., что на 50% превышает показатель за 1995 год. Природный газ, по оценкам экспертов, будет демонстрировать наивысшие темпы роста среди всех ископаемых энергоносителей - на уровне 2,3% в год. В результате, доля природного газа в общем объеме потребления энергоносителей максимально приблизится к показателям по нефти и углю. К 2015 году потребление природного газа превысит суммарное потребление нефти, зафиксированное в 1995 году, то есть составит две трети от объема потребления нефти, ожидаемое в 2015 году. Для сравнения, в 1995 году объемы потребления природного газа составлял лишь 55% от объемов потребления нефти. Ожидается, что выработка энергии на атомных станциях останется стабильной, что приведет к уменьшению доли атомной энергетики в общем балансе энергообеспечения.

 Важным отрицательным фактором производства тепла и электроэнергии, связанных с углеводородными энергоносителями, является массовое и все увеличивающееся загрязнение биосферы (воздуха, воды, почвы) опасными химическими отходами в жидкой, твердой, газообразной и аэрозольной формах. Таким образом, всей экосистеме ежедневно наносится прямой, косвенный или потенциальный ущерб, последствия которого мы уже ощущаем сейчас.
Так, тепловая электростанция средней мощности (ТЭС) с коэффициентом полезного действия 33–39% более половины вырабатываемой энергии возвращает в окружающую среду, поднимая ее температуру. В течение года только одна станция дает до 43 тыс. т золы, 220 тыс. т окиси и закиси серы, около 30–40 тыс. т окислов азота, двуокись углерода и других опасных для живой природы веществ.
Загрязнение атмосферы химическими веществами – основной фактор неблагоприятного воздействия на экологию. Глобальное загрязнение атмосферы приводит к изменению климата, увеличению потока жесткого ультрафиолетового (УФ) излучения на поверхность Земли, увеличению числа кислотных дождей, усилению парникового эффекта, увеличению числа различных заболеваний среди людей и животных.
Ученые предупреждают – над человечеством нависла угроза глобального экологического крушения, когда дальнейшее загрязнение окружающей среды чревато необратимыми последствиями для человека, подобно ядерной катастрофе. На повестку дня поставлен вопрос – как уберечь планету от грозящей катастрофы.
Ясно, что одному государству с такой глобальной проблемой не справиться. Браться за ее решение надо сообща – всему мировому сообществу. Сюда входит поиски новых (альтернативных) видов топлива и энергоносителей.
К альтернативным или как их иногда называют возобновляемым источникам энергии (ВИЭ) относят солнечную, ветровую, геотермальную, энергию приливов, волновую, биоэнергетику и энергию разности температур глубин морей и океанов

 Вывод: Мы посчитали, что современные источники энергии заканчиваются, отсюда возникает вопрос, чем можно заменить, какие альтернативные источники понадобятся?

Выполненные экспериментальные работы и исследования в промышленных условиях на опытно-промышленном стенде позволили получить необходимую информацию и сделать следующие выводы для совершенствования элементной базы технологии:

Обобщение перспектив развития природоохранных технологий Проведенный таким образом анализ современных и перспективных систем очистки от выбросов вредных веществ показал, что в условиях, когда одним из основных источников производства электроэнергии и тепла продолжают оставаться теплоэлектроцентрали, и в условиях прогнозируемого роста потребления твердых горючих ископаемых при высоком фоновом загрязнении окружающей среды, сложившемся в крупных промышленных регионах

Улавливание твердых веществ из дымовых газов ТЭС Характеристики летучей золы.

Расчет степени улавливания обычно ведется для каждой фракции частиц отдельно.

Дисперсный состав летучей золы во многом зависит от дисперсионного состава сжигаемой угольной пыли, поступающей после размольного устройства в топку.

При выборе и эксплуатации золоуловителей следует учитывать абразивность золы и ее смачиваемость.

Если поток газов движется турбулентно , а частицы достаточно мелки (менее 30 мкм) и активно участвуют в турбулентных пульсациях потока, то с известным допущением можно принять, что концентрация частиц у поверхности мало отличается от средней концентрации в рассматриваемом сечении золоуловителя.

Экологические проблемы энергетики