История искусства Энергетика Локальные компьютерные сети Начертательная геометрия и инженерная графика Курс физики Задачи примеры решения Математика лекции и примеры решения задач Электротехника расчет цепей Сопромат

Сопротивление материалов практикум по решению задач

Границы применимости решения Эйлера.
Формула Ясинского

 Как показали опыты, решение Эйлера подтверждалось не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень работает в пределах упругих деформаций по закону Гука. Следовательно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности. В связи с этим найдем границы применимости решения Эйлера:

Рис.7.4

, (7.13)

где -радиус инерции сечения. Если стержень имеет одинаковые опорные закрепления в двух взаимно перпендикулярных плоскостях инерции, то при определении значения критической силы и критического напряжения, необходимо брать наименьшее значение момента инерции и, соответственно, радиуса инерции поперечного сечения.

 Введем понятие гибкости стержня:

.

 Тогда (7.13) принимает вид:

. (7.14)

 Из (7.14) следует, что напряжение sКР возрастает по мере уменьшения гибкости стержня. Заметим, что стержень, имеющий неодинаковые опорные закрепления в главных плоскостях и, следовательно, неодинаковые приведенные длины, теряет устойчивость в той главной плоскости, в которой гибкость стержня имеет наибольшее значение.

 Формула Эйлера неприемлема, если напряжения sКР>sП, где sП-предел пропорциональности. Приравнивая (7.14) к пределу пропорциональности, получим предельное значение гибкости:

. (7.15)

Если l>lПРЕД, то формулу Эйлера можно применять. В противном случае ею пользоваться нельзя. Для стали Ст.3 lПРЕД=100.

 В ситуациях, когда напряжения превышают предел пропорциональности, получение теоретического решения осложняется, т.к. зависимость между напряжениями и деформациями становится нелинейной. В связи с этим, в этих случаях пользуются эмпирическими зависимостями. В частности, Ф.С.Ясинский предложил следующую формулу для критических по устойчивости напряжений:

, (7.16)

где a, b-постоянные, зависящие от материала, так для стали Ст.3 a=3,1105 кН/м2 , b=11,4102 кН/м2.


На главную