Предел последовательности Производная функции

Скалярное поле и его характеристики. Опр. Скалярным полем (с.п.) наз. совокупность двух множеств: множества точек пространства M и множества чисел соответствующих этим точкам, которые определяются функцией U(M). Функция U(M)  наз. функцией поля. Если М DR2, то поле наз. плоским, если МR3 - пространственным. Поле наз. стационарным, если U(M) не зависит от времени. Точки поля с одинаковыми значениями функции образуют линии уровня на плоскости U(x,y) = C и поверхности уровня в пространстве U(x,y,z) = C С.п. можно представить как «слоистую» структуру, где значения поля постоянны в одном слое и меняются при переходе к соседнему слою. Различаются с.п. геометрической формой этих слоев и скоростью изменения значения при переходе от слоя к слою.

Матрицы и определители

Задания для подготовки к практическому занятию

Примеры. Дифференцирование функций. Производная сложной функции. Теорема. Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f. Тогда 

Даны матрицы:

1. Какого размера матрица А? Перечислите ее элементы.

  Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2´3.

Элемент матрицы А в первой строке и первом столбце обозначается а11 и равен в данном случае а, т.е. а11=а. Элемент в первой строке и втором столбце а12=0. Далее, а13=1, а21=-2,5, а22=-b, а23=0.

2. Какого размера матрица АТ? Выпишите ее.

 Решение: Для того, чтобы найти матицу АТ, надо в матрице А заменить строки на столбцы и наоборот. Значит, в матрице АТ будет 3 строки и 2 столбца, т.е. АТ – матрица размера 3´2. При этом первая строка матрицы А станет первым столбцом матрицы АТ, вторая строка станет вторым столбцом:

3.  Найдите 2А+В. Существует ли А+2С?

Решение: Чтобы умножить матрицу на число, надо каждый элемент матрицы умножить на это число, при этом размер матрицы, конечно, сохранится. Следовательно, . Чтобы сложить две матрицы, надо сложить элементы, стоящие в этих матрицах на одинаковых местах. При этом размеры матриц должны совпадать и результат будет матрицей того же размера. Следовательно,

.

Сумма А+2С не существует, так как А – матрица размера 2´3, а матрица 2С, как и матрица С, размера 2´2, так что элементы в третьем столбце матрицы А просто не с чем складывать.

4. Существуют ли произведения АВ, АС, ВА, СА?

Решение: Для того чтобы существовало произведение матриц, надо чтобы количество столбцов первой матрицы совпадало с количеством строк второй матрицы. При этом произведение матриц содержит столько же строк, сколько первая матрица и столько же столбцов, сколько вторая. Рассмотрим попарно данные матрицы и их размеры, подчеркнем те числа, которые должны совпадать чтобы их произведение в указанном порядке существовало:

А – 2´3, В – 2´3, не совпадают, следовательно, АВ не существует;

А – 2´3, С – 2´2, не совпадают, следовательно, АС не существует;

В – 2´3, А – 2´3, не совпадают, следовательно, ВА не существует;

С – 2´2, А – 2´3, совпадают, следовательно, СА существует и является матрицей размера 2´3.

5. Существуют ли определители матриц А, В, С? Если да, вычислите.

Решение: Определитель существует только у квадратной матрицы. Следовательно, матрицы А и В не имеют определителей. Определитель матрицы С вычислим по правилу для определителей второго порядка:

Вычисление двойного интеграла в декартовых координатах.

Определение 1 Замкнутая область D называется правильной в направлении оси 0y (или 0x), если любая прямая, проходящая через внутреннюю точку области D и параллельная оси 0y (или 0x), пересекает границу области D только в двух точках.

  

 Рис.2 Рис.3 Рис.4 Рис.5

На рисунках:

2 – D правильная в направлении 0y;

3 – D правильная в направлении 0x;

4 – D правильная в направлении 0x, но неправильная в направлении 0y;

5 – D правильная в направлении 0y, но неправильная в направлении 0x.

.

Задания для подготовки к практическому занятию Вопросы и задачи Задания для подготовки к практическому занятию Решить матричные уравнения АХ=В и YА=В.

Векторы

Найти площадь этого треугольника. Решение: Есть несколько способов найти площадь треугольника, мы воспользуемся способом, связанным с векторами, а именно – геометрическим смыслом векторного произведения. Согласно ему, площадь треугольника АВС равна половине модулю векторного произведения векторов .

Матрицы. Терминология Прямоугольная таблица действительных чисел

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Применение поверхностных интегралов. Так как поверхностные интегралы  1 и 2 рода сводятся к обычным двойным интегралам, то различные задачи, которые приводят к вычислению двойных интегралов, могут быть представлены через поверхностные интегралы. Рассмотрим несколько таких примеров.

а) Вычисление объема.

Пусть подынтегральная функция в ( 4 ) не зависит от z , тогда она определяет некоторую поверхность z = f(x,y) , а интеграл по D объем цилиндрического бруса, ограниченного этой поверхностью и областью D . Переход к поверхностному интегралу в этом случае дает следующее выражение для объема цилиндрического бруса V =  ( 14 )

Обобщение этой формулы на случай тела произвольной формы ограниченного поверхностью G имеет вид V = 1/3


Производная функции