Тройной интеграл Объём цилиндрического тела

Понятие матриц (матрица-строка, матрица-столбец, квадратная, единичная, диагональная). Равенство матриц. Действия над матрицами (умножение матрицы на число, сложение, вычитание, умножение матриц, транспонирование матриц). Определители 2-го, 3-го и n-го порядка. Минор и алгеброическое дополнение. Обратная матрица и ее вычисление. 3 случая решения системы. Элементарные преобразования над системой. Матричная запись системы линейных уравнений. Решение системы методом Гаусса, с помощью обратной матрицы, по формулам Крамера.

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Область D – правильная в направлении оси Oх, она задается системой неравенств:  где  – это уравнения линий, ограничивающих область слева и справа.

Найдем статический момент пластинки MNK относительно оси Ox по формуле (11):

.

Для вычисления двойного интеграла сводим его к повторному интегралу в соответствии с системой неравенств, задающих область D:

Ответы: Mx = 4,125 ед. стат. момента; область интегрирования на рисунке 11.

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

  Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

,

где область интегрирования V (круговой цилиндр) можно задать системой неравенств:  при R = 0,5 и H = 2.

Для определения массы цилиндра нужно вычислить трехкратный интеграл:

.

Вычислим внутренний интеграл по переменной z: .

Затем находим интеграл по переменной r:

 Третий этап – вычисление внешнего интеграла по переменной φ:

.

Ответ:  ед. массы.

Доказательство. Рассмотрим функцию

;

ее свойства:

 – непрерывна на ; по теореме Вейерштрасса множество ее значений на  – ограниченное множество;

  – дифференцируемая на  функция; по теореме II Вейерштрасса значения  и  достигаются в точках сегмента .

Поскольку , то хотя бы одно из этих значений достигается внутри сегмента. По теореме Ферма найдется точка , в которой .

Итак, указали  так, что .

Интегрирование простейших тригонометрических функций. При интегрировании выражений вида  (где m и n – натуральные числа) рекомендуется принимать во внимание следующие правила.

1) Если обе степени четные, то применяются формулы «понижения степени»: .

2) Предположим, что какое-либо из чисел m и n – нечетное. Например, n=2k+1. В этом случае одну из степеней функции cosx «отщепляют», чтобы внести под знак дифференциала (т.к. ). В оставшемся выражении  с помощьюосновного тригонометрического тождества  выражают через  (). После преобразования подынтегрального выражения (и с учетом свойства линейности) получается алгебраическая сумма интегралов вида , каждый из которых можно найти с помощью формулы 2) из таблицы 2: .


Решение типовых задач