Предел последовательности Производная функции

Поток векторного поля через поверхность. Пусть даны в.п. (M) = {P, Q, R} и двухсторонняя ориентированная поверхность G с нормальным вектором (M) = { }. Опр. Выберем на G бесконечно малую площадку S. Считаем, что во всех ее точках векторы  ,  имеют постоянное значение. Тогда скалярное произведение этих векторов и площади S наз. потоком вектора  через бесконечно малую площадку. Пусть  - векторное поле скоростей потока жидкости. Тогда *П это объем жидкости, протекающей через S за единицу времени в направлении внешней нормали к S, т.к. ||n - высота бруса жидкости, S - его основание. Если угол между векторами тупой и cos(^) < 0, то направления нормали и потока жидкости противоположны.

ОДУ высших порядков.

Линейные уравнения с постоянными коэффициентами

п1. Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

 а) ; б) ; в)

п2. По данным характеристическим уравнениям составить однородные линейные уравнения: 

 а) ; б) ; в)

Задачи к практическому занятию

1.;  2. ; 3.;

4.;  5.;

6.;  7.; 8.; 9.;

10.; 11.;

12.; 13.;

14.; 15.;

16.;  17.; 18.

13.  Подбор частного решения для линейного уравнения с правой частью специального вида

Задания для подготовки к практическому занятию

п1. Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида. Если да, выпишите значения параметров a,b, k:

 а) ; б) ; в) ;

 г) ; д) ; е)

Задачи к практическому занятию

1.;  3.; 4.; 6.;

7.;  11.; 13.;

19.; 17.;

2.;  5.; 8.

9.;  12.; 14.;

23. ; 15. ;

Вычисление тройного интеграла в цилиндрических координатах.

Переход от декартовых координат к цилиндрическим проводится по формулам: ; ; . (рис.4)

 

(; ; )

 Тогда тройной интеграл от

 по области преобразуется

 следующим образом:

 

 рис.4 

Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

Вычислить значение функции  в точке , ответ представить в алгебраической форме комплексного числа

Определить вид кривой .

Проверить, может ли функция  быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.

Разложить в ряд Лорана функцию  в окрестности особой точки .

Векторный анализ. Криволинейные интегралы 1-ого рода. Задача: Кусочно-гладкая кривая линия L на плоскости соединяет точки А и В и определяется уравнением y = y(x) , [a,b] или x = x(t), y = y(t) (t1<t<t2). Вдоль кривой распределены массы с плотностью (M) для каждой точки М. Вычислим общую массу всей системы метод интегральной суммы. 1) Операция разбиения. Разделим кривую L на n участков некоторыми точками А0 = А, А1, . . . , Аn = В. Соединим соседние точки отрезками АiАi+1 длиной si и выделим на каждом из них некоторую точку Мi(). Приближенно масса отдельного отрезка равна mi = (Mi) si , Массу всех отрезков определяет интегральная сумма m(n) = (Mi) si


Производная функции