Предел последовательности Производная функции

Поток векторного поля через поверхность. Пусть даны в.п. (M) = {P, Q, R} и двухсторонняя ориентированная поверхность G с нормальным вектором (M) = { }. Опр. Выберем на G бесконечно малую площадку S. Считаем, что во всех ее точках векторы  ,  имеют постоянное значение. Тогда скалярное произведение этих векторов и площади S наз. потоком вектора  через бесконечно малую площадку. Пусть  - векторное поле скоростей потока жидкости. Тогда *П это объем жидкости, протекающей через S за единицу времени в направлении внешней нормали к S, т.к. ||n - высота бруса жидкости, S - его основание. Если угол между векторами тупой и cos(^) < 0, то направления нормали и потока жидкости противоположны.

Задание 11. Вычислить интегралы от функции комплексного переменного:

а) , где  - отрезок прямой, , .

б) , где  - ломаная, , , .

в) , где  - дуга окружности , .

г) , где  - отрезок прямой , соединяющий точки  и ,  и .

Решение.

а) Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

б) Подынтегральная функция  определена и непрерывна всюду, ломаная  представляет собой кусочно-гладкую кривую, поэтому искомый интеграл сводится к вычислению двух криволинейных интегралов по координатам по формуле:

.

Следовательно,

.

Воспользуемся свойством аддитивности криволинейного интеграла:

.

На отрезке  , значит , . Поэтому .

На отрезке  , , . Поэтому

.

Искомый интеграл  равен .

в) Положим , тогда , . Следовательно,

=.

г) Зададим линию  параметрическими уравнениями: , , , .

Для кривой, заданной параметрическими уравнениями , , справедлива формула .

Поэтому =.

Теорема (о среднем значении тройного интеграла)

Если функция  непрерывна в замкнутой области DR3, то внутри области D найдется хотя бы одна точка , для которой выполняется равенство:

где – объем тела D.

4. Вычисление тройного интеграла в декартовой системе координат.

Для вычисления тройного интеграла от функции  по области DR3 проецируем область D на плоскость 0XY. Обозначим эту проекцию  Пусть область D будет такой, что любая прямая, проходящая через внутреннюю точку области D параллельно оси 0Z, пересекает поверхность S, ограничивающую область D, только в двух точках. Пусть  и – уравнения поверхностей, ограничивающих область D снизу и сверху соответственно (рис.1). Тогда можно записать:

Если область G окажется правильной

в направлении, например, оси 0Y, т.е.

  , то

 Рис.1

Вычислить интегралы, используя теорему Коши о вычетах

Изменить порядок интегрирования в интеграле .

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Найти объем тела  ограниченного поверхностями

Найти массу пластинки (): ,

Найти массу тела , ограниченного поверхностями: ; ; ; ; плотность массы тела .

Векторный анализ. Криволинейные интегралы 1-ого рода. Задача: Кусочно-гладкая кривая линия L на плоскости соединяет точки А и В и определяется уравнением y = y(x) , [a,b] или x = x(t), y = y(t) (t1<t<t2). Вдоль кривой распределены массы с плотностью (M) для каждой точки М. Вычислим общую массу всей системы метод интегральной суммы. 1) Операция разбиения. Разделим кривую L на n участков некоторыми точками А0 = А, А1, . . . , Аn = В. Соединим соседние точки отрезками АiАi+1 длиной si и выделим на каждом из них некоторую точку Мi(). Приближенно масса отдельного отрезка равна mi = (Mi) si , Массу всех отрезков определяет интегральная сумма m(n) = (Mi) si


Производная функции