Тройной интеграл Объём цилиндрического тела

Основные свойства криволинейного  интеграла 1 рода Обычный определенный интеграл есть частный случай криволинейного интеграла, когда в качестве L берется отрезок оси Ох. Поэтому свойства интегралов аналогичны. Постоянный множитель выносится из под знака интеграла т.к. общий множитель членов интегральной суммы можно вынести за скобку. Интеграл от суммы функций равен сумме интегралов т.к. такая интегральная сумма разделяется на две части. Если контур интегрирования разбит на две части L1 и L2 Интеграл не зависит от направления пути интегрирования , т.к. s может только возрастать при удалении от точки отсчета.

Сложение матриц

Операция сложения определена лишь для матриц одинакового размера. Именно, пусть ,

Суммой матриц  и  называется матрица

  (1.2)

О сложении матриц говорят также, что оно осуществляется поэлементно. Как уже отмечалось выше, в процессе изучения алгебры матриц мы будем пользоваться упрощенными обозначениями  и т.д., не указывая всякий раз множества возможных значений индексов  и , поскольку эти значения будут ясны из контекста. Например, следующее определение суммы матриц эквивалентно вышеприведенному определению.

Пусть  и  – действительные матрицы одного порядка, тогда

  (1.3)

Знак читается “равно по определению”, а отсутствие дополнительных указаний на возможные значения индексов  и  объясняется тем, что все матрицы, входящие в равенство (1.3), имеют одинаковый размер  при некоторых натуральных значениях  и  и, следовательно, .

Операция сложения матриц обладает рядом свойств, роднящих её с операцией сложения действительных чисел.

1) Операция сложения матриц коммутативна, т.е. для любых  и  из

  ◄ Пусть . Тогда

.

Здесь на первом и пятом шагах мы воспользовались обозначением суммы матриц, на втором и четвертом – определением суммы, а на третьем шаге – принципом равенства матриц. ►

2) Операция сложения матриц ассоциативна, т.е. для любых  и  из

3) Среди всех матриц множества  существует единственная матрица , обладающая свойством

  (1.4)

для любой матрицы  из .

 ◄ Рассмотрим матрицу порядка , все элементы которой равны 0. Ясно, что .

для любой матрицы  из . Тем самым показано существование матрицы , обладающей нужным свойством. Для доказательства её единственности покажем, что любая матрица  из , удовлетворяющая равенству (1.4) для любых  из , совпадает с матрицей . Действительно, если матрица   такая, как сказано выше, то одновременно выполняются равенства

  и .

Используя свойство коммутативности сложения матриц, получаем, что . ►

Матрица  называется нуль-матрицей, а свойство 3) – свойством существования и единственности нуль-матрицы.

4) Для любой матрицы  существует единственная матрица  такая, что

  (1.5)

 ◄ Пусть , тогда . Действительно,

.

Тем самым доказано существование матрицы , удовлетворяющей равенству (1.5). Для доказательства её единственности предположим существование ещё одной матрицы , удовлетворяющей равенству (1.5), т.е. равенству

  (1.6)

Тогда

.

В то же время,

. ►

Матрица  называется матрицей, противоположной матрице , и обозначается , а свойство 4) – свойством существования и единственности противоположной матрицы. С помощью противоположной матрицы вводится определение вычитания матриц, именно

.

5) Операции сложения и транспонирования матриц связаны формулой

 

Умножение матрицы на число

Пусть матрица  имеет вид (1.1), . Произведением матрицы  на число  называется матрица

.

Иначе говоря, умножение матрицы на число осуществляется поэлементно:

.

Отметим основные свойства введённой операции:

  ◄Действительно,

.  ►

 Заметим также, что противоположная матрица .

Формула Гаусса – Остроградского связывает поток вектора через замкнутую поверхность S, ориентируемую вектором нормали , направленный наружу по отношению к объему V, заключенному внутри поверхности S, с тройным интегралом по объему V от . Если вектор является вектором скорости жидкости, протекающей через объем V, то интеграл дает количество жидкости, вытекающей из объема V через поверхность S в единицу времени. Если жидкость втекает в объем V, то тройной интеграл получается отрицательным, т.к. <0.

Если =0 во всех точках объема V, то поток вектора равен 0. Это означает, что количество втекающей жидкости и вытекающей из объема V одинаковое.

Пример. Определить поток вектора  через внешнюю сторону сферы .

Найдем ;

Следовательно:

Умножение матриц Скалярное умножение арифметических векторов Пусть . Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ). Рассмотрим основные свойства умножения матриц

Теория делимости квадратных матриц Выше мы убедились, что арифметические операции над матрицами, прежде всего в части умножения, отличаются по своим свойствам от аналогичных операций над числами. Однако наиболее существенные отличия связаны с операцией деления.

Основные типы алгебраических структур Пример. Множество  является мультипликативной группой, т.е. операция умножения матриц определяет на этом множестве структуру группы. Элементарные преобразования над матрицами и элементарные матрицы

Нашей ближайшей целью является доказательство того, что любая матрица с помощью элементарных преобразований может быть приведена к некоторым стандартным видам. На этом пути полезным является язык эквивалентных матриц.

Пример Построить матрицу  приведённого вида, Разложение матрицы в произведение простейших 1-й критерий обратимости матрицы. Для того, чтобы матрица  была обратимой, необходимо и достаточно, чтобы она была представима в виде произведения элементарных матриц. Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима очевидно.

Интегрирование функций нескольких переменных. Двойной интеграл и его свойства. Метод интегральной суммы. Всякая физическая система имеет пространственные размеры и описывается набором величин, которые могут меняться при переходе от точки к точке системы. Например, тело имеет переменную плотность. Задача – вычислить общую массу тела. Решение такого типа задач и дает метод интегральной суммы. Опр. Аддитивной величиной наз. параметр физической системы Р, который можно представить как сумму значений этого параметра от всех составных частей системы  P = pi . Например, площадь фигуры, объем тела, длина пройденного пути. Разбиение на составные части в этих случаях совершенно произвольно.
Определение функции нескольких переменных