Тройной интеграл Объём цилиндрического тела

Тройной интеграл. Задача о вычислении массы тела. Имеем объем V заполненный массой с переменной плотностью r(x,y,z). Вычислим общую массу по всему объему методом интегральной суммы. Операция разбиения. Разделим  V на n элементарных объемов DV1, DV3,V3, . . . , DVn и в пределах каждого из них выделим точку Mi(). Масса элементарного объема приближенно равна r() DVi . Приближенное значение массы всего тела определяет интегральная сумма

Определенный интеграл Вычисление определенного интеграла

Пример 9. Вычислить интеграл .

Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

 

Так как данный интеграл является определенным, то при замене переменной , меняются пределы интегрирования:

.

На отрезке  по переменной t функция  непрерывно дифференцируема, монотонна и в границах его принимает значения границ отрезка  по переменной x. Следовательно, выбранная замена переменной правомерна. Получаем:

.

Несобственный интеграл.

Пример 10. Вычислить несобственный интеграл  или доказать его расходимость.

Решение. Перейдем от несобственного интеграла к определенному с границами .Далее считаем полученный интеграл, с помощью обычных правил интегрирования:

Пример 11. Вычислить несобственный интеграл  или установить его расходимость.

Решение. Так же, как и в предыдущем примере, перейдем от несобственного интеграла к определенному под знаком предела.

Замечание: когда , то .

Поэтому получаем, что , а это значит, что данный интеграл расходится.

Пример 12. Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.

СВОЙСТВА НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Свойства неопределенного интеграла базируются на свойствах дифференциала функции.

Напомним, что если  – дифференцируемая в точке  функция, то произведение

является дифференциалом функции  в точке  соответственно приращению аргумента .

Для дифференцируемых функций  и  правила действий над их дифференциалами аналогичны правилам вычисления производных (здесь и везде далее  – произвольное число), а именно:

;

;

;

.

Для первообразной  функции  из соотношения ,  имеем  или  – подведение функции  под дифференциал.

Приложения определенного интеграла Площадь плоской криволинейной трапеции. Пример. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Преобразования плоских областей. Замена переменных в двойных интегралах связана с переходом от прямоугольной к криволинейной системам координат. Имеем плоскость с прямоугольной  системой координат хОу и систему непрерывных функций Для каждой точке плоскости  (xi,yi) получаем два числа (ui,vi) , которые можно понимать как координаты другой точки. Выделим в xOy область D , ограниченную замкнутым контуром ¶D. Тогда, уравнения  ( 1 ) относят точкам области D множество точек (ui,vi). Пусть такое множество образует на плоскости область D*, ограниченную замкнутым контуром ¶D*. Каждой точке из D отвечает своя точка из D* и ни одна из них не пропущена. В этом случае систему ( 1 ) можно однозначно разрешить относительно х и у
Определение функции нескольких переменных