Примеры выполнения курсовой работы по электротехнике

Первобытное и «примитивное»
искусство
Истоки христианского искусства
Индия и Китай Западная Азия
Эллада
Древнехристианская эпоха
Магометанское искусство в Индии
Дальнейшее развитие христианства
в Европе
Архитектура Запада
Романский стиль. Готика
Италия в эпоху возрождения
Фламандская и Голландская школы
Современные интерьеры
общественных зданий
Эмоциональный потенциал
архитектуры
История искусства
Об условном развитии
пространства
О масштабе и образе
Форма, материал, цвет
О  компонентах интерьера
Язык архитектуры
Дизайн архитектурной среды
Стиль модерн Ар Нуво
Промышленные выставки
Искусство Западная Европа
Искусство Россия
Архитектура и скульптура
Живопись Россия
Импрессионизм
Эпоха Возрождения
Искусство Испании
Искусство Голландии
Европа и Россия XVIII век
Формирование
История искусства
  • Доисторическая эпоха
  • Изображении божеств Египта
  • Индия и Китай Буддизм
  • Западная Азия
  • Искусство у египтян, вавилонян и персов
  • Архитектура
  • Жертвоприношение Ифигении
  • При раскопках Помпеи
  • Культ Аполлона
  • Регалии древних царей Рима
  • Идеи христианства
  • Расцвет древнехристианского искусства
  • Сасаниды
  • Постройки Индии
  • В Михайловском храме
  • Лобное место
  • Первые мастера и живописцы
  • Одежда XI—XVII веков
  • Возрождение Италии
  • Микеланджело
  • Тициан Вечеллио
  • Брабантская школа фламандцев
  • Директория и империя
  • Эпоха петровских преобразований
  • Кандинский — теоретик искусства
    Математика
    Математический анализ
    Математика лекции и примеры решения задач
    Векторная алгебра
    Интеграл Фурье
    Вычисление интегралов
    Поверхностный интеграл первого рода
    Матрицы и определители
    Типовые расчеты по математике
    Расчет электрических цепей
    Электротехника
    Курс физики кинематика Задачи
    Методы расчета сложных цепей
    Физика Задачи примеры решения
    Электротехника расчет цепей
    Задачи по электротехнике
    Примеры решения задач
    к контрольной работе
    .
    Мащиностроительное черчение
    Начертательная геометрия
    Черчение
    Техническая механика
    Инженерная графика
    Информатика
    Локальные компьютерные сети
    Базы данных Access
    Информационные сети
    Аппаратура передачи данных
    Доступ к корпоративным
    базам данных
    Локальные и глобальные сети
    Информатика
    Администрирование баз
    данных
    Атомные станции
    Воздействие радиации на человека
    Экология энергетики
    Энергетика

    Первое  правило Кирхгофа Алгебраическая сумма сил токов, сходящихся а узле, равна нулю

    Источники тока с электродвижущими силами ε1 и ε2 включены в цепь, как показано на рис. 19.2. Определить силы токов, текущих в сопротивлениях R2 и R3, если ε1= 10 В и ε2=4 В, а R1=R4=20м и R2=R3=4 Ом. Сопротивлениями источников тока пренебречь.

    Сила тока в проводнике сопротивлением R=20 Ом нарастает в течение вре­мени Δt=2 с по линейному за. кону от I0=0 до Imax=6 А (рис. 19.3). Определить количество теплоты Q1, выделившееся в этом проводнике за первую секунду, и Q2 - за вторую, а также найти отношение этих количеств теплоты Q2/Q1.

    Расчет  разветвленной цепи постоянного тока Содержание задания: определить токи во всех ветвях схемы, составить баланс мощностей, найти показания вольтметров, найти входную проводимость схемы для источника E2 и взаимную проводимость с ветвью E3 - R3. Определить также ток i2 методом эквивалентного генератора.

    Расчет установившегося режима в электрических цепях с источниками постоянного напряжения и тока

    Баланс мощностей. Для любой электрической цепи суммарная мощность Ри, развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности Рп, расходуемой потребителями (резисторами).

    Найти: все неизвестные токи, используя законы Кирхгофа; показать, что баланс мощностей имеет место

    Измерение вакуума. Под измерением вакуума понимают измерение давления разреженного газа. В зависимости от диапазонов измеряемых давлений применяют различные типы манометров. Основными из них являются жидкостные (ртутные), термоэлектрические, электроразрядные и магнитные.

    Источники питания электронных устройств Применение различного рода электронных устройств для управления производственными процессами подразумевает использование электрической энергии определенного вида для их питания (постоянный, переменный ток).

    Найти: ток через источник Е, используя метод эквивалентных преобразований. Обозначим положительное направление искомого тока Iх. Нарисуем эквивалентную электрическую схему с эквивалентным генератором. На схеме произвольно выбрано положительно направление ЭДС Ег. Это позволяет записать для режима холостого хода эквивалентного генератора с отключенной ветвью Найти: все неизвестные токи методом контурных токов

    Расчет переходных процессов в электрических цепях с источниками постоянного напряжения и тока [an error occurred while processing this directive]

    Операторный метод расчета

    Записываем мгновенные значения напряжения на ёмкостном элементе

    Расчет электрических цепей однофазного синусоидального тока

    Законы Кирхгофа. Для записи уравнений на основании законов Кирхгофа надо выбрать положительные направления для всех токов и обозначить их на схеме.

    Найти: неизвестные токи, напряжения, проверить соблюдение баланса мощностей Представляем сопротивления элементов и мгновенные значения e(t), u(t), i(t) комплексными числами и рисуем схему замещения, заменяя элементы их комплексными сопротивлениями

    Расчет электрических цепей несинусоидального периодического тока периодическое негармоническое воздействие представляют в виде суммы гармонических сигналов, используя ряд Фурье

    представить напряжение источника f(x)=e( w t) рядом Фурье, ограничив число членов ряда постоянной составляющей и тремя первыми гармониками.

    В сеть переменного тока напряжением U=120 В и частотой f= 50 Гц включены последовательно катушка индуктивности с па­раметрами R=160 Ом и L=102 мГ и конденсатор емкостью С=159 мкФ (рис.13). На схеме показаны приборы для измерения тока, напряжения, активной мощности.

    В сеть переменного тока напряжением U=120 В и частотой f=50 Гц, включены параллельно два приемника энергии: первый - мощностью P1=1,92 кВт с коэффициентом мощности cosφ=0,8 (катушка индуктивности), второй - последовательно соединенные резистор с сопротивлением R2=6 Ом и конденсатор, емкость которого С2=398 мкФ.

    Расчет разветвленной электрической цепи постоянного тока Для освоения методов предлагается рассчитать параметры электрической цепи, изображенной на рис. 1. Задача состоит в определении значений всех неизвестных токов и расчете падений напряжения на всех элементах электрической цепи.

    Метод узловых потенциалов. Этим методом рекомендуется пользоваться в тех случаях, когда число уравнений в системе меньше числа уравнений, составленных по методу контурных токов. Число уравнений в системе при использовании метода узловых потенциалов равно n = NУ–1.

    Метод наложения. В основе метода наложения лежит принцип суперпозиции, заключающийся в том, что ток в любой ветви электрической цепи можно рассчитать как алгебраическую сумму токов, вызываемых в ней от каждого источника в отдельности. Ток от отдельно взятого источника называется частным. При расчете частного тока все остальные источники ЭДС заменяются короткозамкнутыми перемычками, а ветви с источниками тока размыкаются. Поскольку в этом случае в рассматриваемых цепях остается только по одному источнику, расчеты производят не решением системы уравнений, а последовательным упрощением цепей путем использования правил для последовательного и параллельного соединения элементов, преобразования звезды в треугольник или треугольника в эквивалентную звезду и т. д.

    Метод эквивалентного генератора обычно используется тогда, когда требуется рассчитать ток в одной ветви цепи. В этом случае следует предположить, что выбранная ветвь подключена к некоторому источнику с ЭДС равному Еэкв и внутренним сопротивлением rэкв.

    Расчет разветвленной электрической цепи переменного тока с использованием закона Ома. Целью данного задания является научиться применять закон Ома при расчетах электрических цепей переменного тока. При выполнении задания необходимо уметь пользоваться различными формами записи комплексных величин, описывающих электрическую цепь, а также применять эти записи для вычисления токов, падений напряжений на отдельных элементах электрической цепи и построении векторных диаграмм.

    Пример Найти токораспределение в схеме

    Дана схема, изображенная на рисунке 2.9. Напряжение  на зажимах цепи изменяется по закону: Определить: показание амперметра, закон изменения тока в цепи, построить векторную диаграмму. Прежде, чем написать закон изменения тока в цепи, можно построить векторную диаграмму, из которой можно определить, опережает или отстает ток по фазе от приложенного напряжения.

    Трехфазный электрический ток В настоящее время получение, передача и распределение электроэнергии в большинстве случаев производится посредством трехфазной системы.

    Соединение звездой Обмотки фаз генераторов можно было бы соединить с тремя приемниками электроэнергии шестью проводами (рис. 3.4а) и получить таким путем три независимые фазные цепи. Практически подобное соединение применяется лишь в редких случаях, но с помощью такой схемы можно нагляднее представить условия, возникающие при объединении цепей в трехфазную систему. Как и в однофазных цепях переменного тока, стрелки на схеме показывают положительные направления фазных э.д.с. и создаваемых ими токов. Положительные направления определяет разметка зажимов обмоток фаз генератора. Внутри обмоток э.д.с. и токи направлены от «концов» (X, Y, Z) к «началам» (А, В, С). Во внешней цепи токи направлены от начал обмоток фаз генераторов к приемникам.

    Соединение фаз треугольником Несколько реже, чем соединение звездой, в трехфазных устройствах применяют соединение треугольником

    Мощность трехфазной системы и ее измерение Активная мощность трехфазной системы Р является суммой фазных активных мощностей, а для каждой из них справедливо основное выражение активной мощности цепей переменного тока.

    Асинхронный электродвигатель является основным видом электродвигателей, выпускаемых электротехнической промышленностью. Своей простотой, надежностью, относительной дешевизной он завоевал  преимущественное распространение по сравнению с другими видами электроприводов и находит применение во всех отраслях народного хозяйства.

    Пример На рисунке 2 изображена электрическая цепь со смешанным соединением резисторов. Известны значения сопротивлений резисторов R1 = 3 Ом, R2 = 10 Ом, R3 = 15 Ом, R4 = 1 Ом, напряжение U= 110 B и время работы цепи t = 10 ч. Определить токи, проходящие через каждый резистор, I1, I2, I3, I4, общую мощность цепи Р и расход энергии W.

    Электрическая цепь, состоящая из нескольких резисторов, имеет эквивалентное сопротивление Rэк1 = 10 Ом. Каким способом и какой по значению сопротивления резистор Rx следует подключить к цепи, чтобы увеличить эквивалентное сопротивление этой цепи до величины Rэк2 = 25 Ом? Соединение потребителей звездой

    Пример Три активных сопротивления Rф1 = 22 Ом, Rф2= 27,5 Ом, Rф3 = 11 Ом соединены треугольником и присоединены трехпроводной трехфазной линии с линейным напряжением Uл = 220 В (рисунок 14). Определить фазные (IAB, IBC,ICA) и линейные (IA,IB,IC) токи, фазные (Рф1,Рф2, Рф3) и общую Р мощности трехфазной цепи.

    Пример Три одинаковых потребителя, имеющих активные сопротивления Rф1 = Rф2 = Rф3 = 10 Ом, соединены треугольником (рисунок 14) и подключены к трехфазной электрической цепи с линейным напряжением Uл = 220 В. Определить: фазные IAB, IBC, ICA и линейные IA,IB,IC токи, фазные мощности РАВ, РВС, РСА и общую активную мощность трехфазной цепи Р.

    Три активных сопротивления Rф1 = 10 Ом, Rф2 = 20 Ом, Rф3 = 5 Ом соединены звездой с нейтральным проводом и присоединены четырехпроводной трехфазной линии с линейным напряжением Uл = 220В

    Осветительные лампы трех этажей ткацкой фабрики соединены звездой и присоединены к трехфазной четырехпроводной линии с линейным напряжением Uл = 380 В. Число ламп на каждом этаже одинаковое n1 = n2 = n3 =50. Мощность каждой лампы Рламп = 100 Вт. Определить: 1) фазные токи IA, IB, IC при одновременном включении всех ламп на каждом этаже; 2) фазные активные мощности РА, РВ, РС и мощность Р всей трехфазной цепи; 3) ответить на вопрос чему будет равен ток в нейтральном проводе?

    Рассмотрим вопрос, знание которого необходимо для решения задачи: зависимость между частотой вращения магнитного поля статора (синхронная частота вращения) n1 и частотой вращения ротора двигателя n2.

    Асинхронный двигатель имеет следующие технические данные для работы в номинальном режиме Генератор с параллельным возбуждением

    Генератор постоянного тока с параллельным возбуждением, имеющий сопротивление обмотки якоря Rя = 0,1 Ом и сопротивление обмотки возбуждения Rв = 60 Ом, нагружен внешним сопротивлением R= 4 Ом. Напряжение на зажимах машины U = 220 В.

    Двигатель постоянного тока с параллельным возбуждением (рисунок 25) работает в номинальном режиме, потребляет ток из сети Iном = 102 А при напряжении Uном = 220 В. Сопротивление обмотки возбуждения Rв = 32 Ом. ПротивоЭДС, которая индуцируется в обмотке якоря, Е = 214,9 В.

    Структурная схема выпрямителя состоит из трех основных частей: трансформатора, вентилей (диодов) и фильтра. Кроме того, может применятся стабилизатор напряжения.

      Пример Для питания постоянным током потребителя мощностью Pd = Вт при напряжении Ud = 100 B необходимо собрать схему однополупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2.

     Пример Для питания постоянным током потребителя мощностью Рd = 800 Вт при напряжении Ud = 150 B необходимо собрать мостовую схему двухполупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2. Начертить схему выпрямителя.

    Решение типовых задач по математике и физике