История искусства Энергетика Локальные компьютерные сети Начертательная геометрия и инженерная графика Курс физики Задачи примеры решения Математика лекции и примеры решения задач Электротехника расчет цепей Информатика
Методы расчета сложных цепей

Несинусоидальные функции времени с периодической огибающей В отличие от периодических функций, рассмотренных выше, существуют несинусоидальные кривые с периодическими или почти периодическими огибающими. Для них характерно то, что они имеют конечное число слагаемых в разложении.

Расчет разветвлённых цепей при наличии взаимной индуктивности

Расчёт разветвлённых цепей при наличии взаимной индуктивности представляется более сложным этапом. Он осуществляется с помощью законов Кирхгофа либо методов контурных токов. Отметим, что метод узловых потенциалов в данном случае не применим, поскольку токи в ветвях определяются не только разностью потенциалов соседних узлов, но и токами других ветвей, с которыми они связаны индуктивно. Пусть имеются три индуктивно связанные катушки, намотанные на общий сердечник, выполненный из немагнитного материала, и подключённые к двум источникам ЭДС. Получим электрическую схему по рис.6.10.

Выберем в качестве расчётного метод контурных токов и составим систему уравнений относительно заданных на схеме контурных токов.

  .

Решив систему, получим: ; ; .

Рис.6.10. Электрическая схема с индуктивно
связанными катушками

НЕСИНУСОИДАЛЬНЫЕ ТОКИ Расчет электрических цепей, выполненный ранее, проводился в предположении, что источники энергии были либо постоянными, либо синусоидальными и вызывали в элементах цепей постоянные или синусоидальные токи. В реальных условиях кривые ЭДС, напряжения и тока лишь в определенной мере могут считаться синусоидальными, при этом указанные параметры цепей могут иметь характер периодический, квазипериодический (почти периодический) и непериодический.
Метод узловых потенциалов